STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bkdA22-oxoisovalerate dehydrogenase subunit beta. (352 aa)    
Predicted Functional Partners:
sucA
2-oxoglutarate dehydrogenase E1 component.
   
 0.999
bkdA1
2-oxoisovalerate dehydrogenase subunit alpha.
 0.999
bkdB
Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex.
 0.999
prs_1
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 0.999
lipL
Octanoyl-[GcvH]:protein N-octanoyltransferase.
  
 
 0.999
sucB
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2).
 0.998
lpdV
Dihydrolipoyl dehydrogenase.
 0.998
aceF
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
 0.997
gcvH_1
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
  
 
 0.994
gcvH_2
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
  
 
 0.994
Your Current Organism:
Pseudomonas fluorescens
NCBI taxonomy Id: 294
Other names: ATCC 13525, Bacillus fluorescens, Bacillus fluorescens liquefaciens, Bacterium fluorescen, CCEB 546, CFBP 2102, CIP 69.13, DSM 50090, IAM 12022, IFO 14160, JCM 5963, Liquidomonas fluorescens, NBRC 14160, NCCB 76040, NCIB 9046, NCIB:9046, NCIMB 9046, NCTC 10038, NRRL B-14678, P. fluorescens, Pseudomonas sp. AU2390, Pseudomonas sp. BZ64, Pseudomonas sp. FY32, Pseudomonas sp. HSA2/2016, Pseudomonas sp. HSA3/2016, Pseudomonas sp. ISSDS-433, Pseudomonas sp. JCM 17186, Pseudomonas sp. JCM 2779, Pseudomonas sp. KH-20150KS3, Pseudomonas sp. LBUM223, Pseudomonas sp. LBUM636, Pseudomonas sp. SM2/2016, RH 818, VKM B-894, bacterium P1-1, strain M. Rhodes 28/5
Server load: low (20%) [HD]