STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gcvRGlycine cleavage system transcriptional repressor. (177 aa)    
Predicted Functional Partners:
dapA
4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA).
  
 
  0.835
gcvPA
Putative glycine dehydrogenase (decarboxylating) subunit 1; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
  
 
 0.714
gcvPB
Putative glycine dehydrogenase (decarboxylating) subunit 2; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily.
  
 
 0.714
metG_1
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
   
 
  0.710
gcvT
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
 
  
 0.686
zipA
Cell division protein ZipA; Essential cell division protein that stabilizes the FtsZ protofilaments by cross-linking them and that serves as a cytoplasmic membrane anchor for the Z ring. Also required for the recruitment to the septal ring of downstream cell division proteins.
  
     0.665
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.
    
  0.660
folD
Bifunctional protein FolD protein; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
 
  0.641
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis.
  
 
  0.638
KRG22078.1
Membrane fusogenic activity.
  
     0.595
Your Current Organism:
Berkiella aquae
NCBI taxonomy Id: 295108
Other names: C. Berkiella aquae, Candidatus Berkiella aquae, Coxiellaceae bacterium HT99, Legionella-like amoebal pathogen HT99
Server load: low (14%) [HD]