STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APQ15457.1V-type ATP synthase subunit K; Produces ATP from ADP in the presence of a proton gradient across the membrane; the K subunit is a nonenzymatic component which binds the dimeric form by interacting with the G and E subunits; Derived by automated computational analysis using gene prediction method: Protein Homology. (144 aa)    
Predicted Functional Partners:
atpE
V-type ATP synthase subunit E; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
atpA
V-type ATP synthase subunit A; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. Belongs to the ATPase alpha/beta chains family.
  
 0.999
atpB
V-type ATP synthase subunit B; Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit.
 
 0.999
atpD
V-type ATP synthase subunit D; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
APQ15456.1
V-type ATP synthase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
rpsK
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
  
  
 0.933
rpsZ
30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site.
  
  
 0.930
rplP
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
  
  
 0.928
yidC
Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins.
  
 
 0.923
rpsH
30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family.
  
  
 0.915
Your Current Organism:
Borreliella garinii
NCBI taxonomy Id: 29519
Other names: ATCC 51383, B. garinii, Borrelia garini, Borrelia garinii, Borrelia genomic group 20047, CIP 103362, DSM 10534, strain 20047
Server load: low (24%) [HD]