STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APG43052.1CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDP-alcohol phosphatidyltransferase class-I family. (437 aa)    
Predicted Functional Partners:
A6070_08320
Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4-phosphate; frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family.
  
 
 0.975
psd
Phosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer).
 
 0.974
APG45281.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family.
  
  
 0.962
APG45021.1
Phosphoserine phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.930
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
    
 0.917
trpA
Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family.
    
  0.907
trpB
Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
    
  0.905
trpB-2
Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
    
  0.905
APG45345.1
Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.831
APG44175.1
Histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.831
Your Current Organism:
Pelobacter acetylenicus
NCBI taxonomy Id: 29542
Other names: DSM 3246, NBRC 103808, P. acetylenicus, strain WoAcy 1
Server load: low (18%) [HD]