STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APG45000.15-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (801 aa)    
Predicted Functional Partners:
APG45190.1
Bifunctional homocysteine S-methyltransferase/methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
0.999
APG45323.1
Methylenetetrahydrofolate reductase [NAD(P)H]; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family.
 
 
 0.998
APG43721.1
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.956
ahcY
Adenosylhomocysteinase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine.
  
 
 0.955
metK
Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
  
 
 0.955
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
     
 0.941
APG43719.1
Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.936
APG43082.1
Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
    
 0.919
APG42938.1
Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.917
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
    
 0.916
Your Current Organism:
Pelobacter acetylenicus
NCBI taxonomy Id: 29542
Other names: DSM 3246, NBRC 103808, P. acetylenicus, strain WoAcy 1
Server load: low (20%) [HD]