STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
grpEMolecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (274 aa)    
Predicted Functional Partners:
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.999
hrcA
HrcA family transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.983
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.972
msrA
Methionine sulfoxide reductase A; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine.
  
 
 0.790
AKF41056.1
Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.761
AKF40997.1
RNA polymerase sigma factor; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.743
AKF40935.1
DNA polymerase I; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.673
AKF41176.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.608
AKF41177.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.573
atpE
ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 
 0.571
Your Current Organism:
Mycoplasma canis
NCBI taxonomy Id: 29555
Other names: ATCC 19525, Asterococcus canis, IFO 14846, M. canis, Mycoplasmopsis canis, NBRC 14846, NCTC 10146, strain PG 14, strain PG14, strain beta
Server load: low (8%) [HD]