node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Bpro_2804 | Bpro_3244 | Bpro_2804 | Bpro_3244 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit M. | 0.997 |
Bpro_2804 | Bpro_3245 | Bpro_2804 | Bpro_3245 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit L. | 0.990 |
Bpro_2804 | nuoA | Bpro_2804 | Bpro_3256 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.996 |
Bpro_2804 | nuoB | Bpro_2804 | Bpro_3255 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). | 0.997 |
Bpro_2804 | nuoC | Bpro_2804 | Bpro_3254 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.997 |
Bpro_2804 | nuoD | Bpro_2804 | Bpro_3253 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.997 |
Bpro_2804 | nuoH | Bpro_2804 | Bpro_3249 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.997 |
Bpro_2804 | nuoI | Bpro_2804 | Bpro_3248 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.996 |
Bpro_2804 | nuoK | Bpro_2804 | Bpro_3246 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.990 |
Bpro_2804 | nuoN | Bpro_2804 | Bpro_3243 | NAD-dependent formate dehydrogenase flavoprotein subunit. | NADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.996 |
Bpro_3244 | Bpro_2804 | Bpro_3244 | Bpro_2804 | NADH dehydrogenase subunit M. | NAD-dependent formate dehydrogenase flavoprotein subunit. | 0.997 |
Bpro_3244 | Bpro_3245 | Bpro_3244 | Bpro_3245 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit L. | 0.996 |
Bpro_3244 | nuoA | Bpro_3244 | Bpro_3256 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.998 |
Bpro_3244 | nuoB | Bpro_3244 | Bpro_3255 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). | 0.998 |
Bpro_3244 | nuoC | Bpro_3244 | Bpro_3254 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. | 0.998 |
Bpro_3244 | nuoD | Bpro_3244 | Bpro_3253 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.998 |
Bpro_3244 | nuoH | Bpro_3244 | Bpro_3249 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.998 |
Bpro_3244 | nuoI | Bpro_3244 | Bpro_3248 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.997 |
Bpro_3244 | nuoK | Bpro_3244 | Bpro_3246 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.997 |
Bpro_3244 | nuoN | Bpro_3244 | Bpro_3243 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |