STRINGSTRING
PBPRA3148 protein (Photobacterium profundum) - STRING interaction network
"PBPRA3148" - dITP/XTP pyrophosphatase in Photobacterium profundum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PBPRA3148dITP/XTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions; Belongs to the HAM1 NTPase family (197 aa)    
Predicted Functional Partners:
guaB
Inosine-5’-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5’-phosphate (IMP) to xanthosine 5’-phosphate (XMP), the first committed and rate- limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth; Belongs to the IMPDH/GMPR family (487 aa)
 
  0.985
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (527 aa)
 
 
  0.975
ndk
Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (142 aa)
   
  0.929
rph
Ribonuclease PH; Phosphorolytic exoribonuclease that removes nucleotide residues following the -CCA terminus of tRNA and adds nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates (238 aa)
 
        0.928
surE
5’-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5’-monophosphates; Belongs to the SurE nucleotidase family (257 aa)
   
 
  0.911
T0175
Hypoxanthine phosphoribosyltransferase; Catalyzes the salvage synthesis of inosine-5’-monophosphate (IMP) and guanosine-5’-monophosphate (GMP) from the purine bases hypoxanthine and guanine, respectively; Belongs to the purine/pyrimidine phosphoribosyltransferase family (177 aa)
   
 
    0.906
PBPRA1638
annotation not available (188 aa)
   
 
    0.906
gpt
Xanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily (152 aa)
       
  0.905
PBPRB1892
annotation not available (660 aa)
       
    0.903
SO3317
annotation not available (586 aa)
       
    0.903
Your Current Organism:
Photobacterium profundum
NCBI taxonomy Id: 298386
Other names: P. profundum SS9, Photobacterium SS9, Photobacterium profundum, Photobacterium profundum SS9, Photobacterium profundum str. SS9, Photobacterium profundum strain SS9, Photobacterium sp. (strain SS9), Photobacterium sp. SS9, deep-sea eubacterium SS9
Server load: low (17%) [HD]