STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
selDSelenophosphate synthase; Synthesizes selenophosphate from selenide and ATP. (347 aa)    
Predicted Functional Partners:
selA
Selenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis; Belongs to the SelA family.
 
  
 0.996
ybbB
Putative capsule anchoring protein; Involved in the post-transcriptional modification of the uridine at the wobble position (U34) of tRNA(Lys), tRNA(Glu) and tRNA(Gln). Catalyzes the conversion of 2-thiouridine (S2U-RNA) to 2- selenouridine (Se2U-RNA). Acts in a two-step process involving geranylation of 2-thiouridine (S2U) to S-geranyl-2-thiouridine (geS2U) and subsequent selenation of the latter derivative to 2-selenouridine (Se2U) in the tRNA chain.
   
 0.990
selB
selenocysteinyl-tRNA-specific translation factor; Code: J; COG: COG3276.
 
   
 0.960
yfhO
Putative aminotransferase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur and selenium atoms from cysteine and selenocysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Also functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate.
    
 0.918
trxB
Thioredoxin reductase; Code: O; COG: COG0492.
     
 0.916
fdhE
Affects formate dehydrogenase-N; Necessary for formate dehydrogenase activity. Belongs to the FdhE family.
 
   
 0.845
serS
Serine tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
      
 0.842
fdhD
Affects formate dehydrogenase-N; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family.
     
 0.839
topB
DNA topoisomerase III; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA su [...]
       0.800
hycI
HycI; Protease involved in processing C-terminal end of the large subunit of hydrogenase 3; Code: C; COG: COG0680.
      
 0.780
Your Current Organism:
Shigella dysenteriae
NCBI taxonomy Id: 300267
Other names: S. dysenteriae Sd197, Shigella dysenteriae Sd197, Shigella dysenteriae str. Sd197, Shigella dysenteriae strain Sd197
Server load: low (16%) [HD]