STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GV64_22315Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa)    
Predicted Functional Partners:
GV64_22310
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.995
GV64_20520
Ubiquinol-cytochrome C reductase; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
  
 0.965
GV64_20515
Cytochrome B; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
  
 0.958
GV64_01970
MFS transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.938
GV64_18995
Cbb3-type cytochrome c oxidase subunit II; CcoO; FixO; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.934
GV64_01955
Cytochrome B559 subunit alpha; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
  
 0.890
GV64_23940
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.885
GV64_01960
Cytochrome oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
  
 0.884
GV64_22140
Nitric oxide reductase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.881
GV64_17665
Nitrate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. NasA/NapA/NarB subfamily.
  
 0.879
Your Current Organism:
Endozoicomonas elysicola
NCBI taxonomy Id: 305900
Other names: DSM 22380, E. elysicola, Endozoicomonas elysicola Kurahashi and Yokota 2007, IAM 15107, JCM 21568, KCTC 12372, strain MKT110
Server load: low (14%) [HD]