STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrBExcinuclease ABC, B subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (691 aa)    
Predicted Functional Partners:
uvrA
Excinuclease ABC, A subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 0.991
uvrA-2
Excinuclease ABC, A subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 0.991
uvrC
Excinuclease ABC, C subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 0.985
SRU_1441
Exonuclease family; Identified by match to protein family HMM PF00929; match to protein family HMM PF01541; match to protein family HMM PF02151.
 
 
 0.982
SRU_2315
DNA helicase II; Identified by match to protein family HMM PF00580; match to protein family HMM PF00929.
 
 
 0.828
SRU_0718
Probable ATP-dependent DNA helicase; Identified by match to protein family HMM PF00580.
 
 
 0.772
uvrd
ATP-dependent DNA helicase; Identified by match to protein family HMM PF00580.
 
 
 0.767
SRU_0538
ATP-dependent DNA helicase pcrA; Identified by match to protein family HMM PF00580.
 
 
 0.750
ftsK
Identified by match to protein family HMM PF01580.
     
 0.684
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
      
 0.674
Your Current Organism:
Salinibacter ruber
NCBI taxonomy Id: 309807
Other names: S. ruber DSM 13855, Salinibacter ruber DSM 13855, Salinibacter ruber str. DSM 13855, Salinibacter ruber strain DSM 13855
Server load: low (28%) [HD]