Full Link:
STRINGSTRING
JNB_02440 protein (Janibacter sp. HTCC2649) - STRING interaction network
"JNB_02440" - Probable transcriptional regulatory protein JNB_02440 in Janibacter sp. HTCC2649
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
JNB_02440Probable transcriptional regulatory protein JNB_02440 (252 aa)    
Predicted Functional Partners:
ruvB
Holliday junction ATP-dependent DNA helicase RuvB ; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (392 aa)
 
          0.850
ruvA
Holliday junction ATP-dependent DNA helicase RuvA ; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (201 aa)
 
          0.764
JNB_04225
Aspartyl-tRNA synthetase (620 aa)
 
   
  0.746
pdxT
Pyridoxal 5’-phosphate synthase glutaminase subunit ; Catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the biosynthesis of pyridoxal 5’-phosphate. The resulting ammonia molecule is channeled to the active site of PdxS (203 aa)
   
   
  0.742
secD
Protein translocase subunit SecD ; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA (619 aa)
 
        0.713
ruvC
Holliday junction resolvase RuvC ; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5’-terminal phosphate and a 3’-terminal hydroxyl group (165 aa)
   
        0.707
secF
Protein-export membrane protein SecF ; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA (397 aa)
 
        0.705
JNB_02395
Putative glycosyltransferase (399 aa)
       
    0.668
prfB
Peptide chain release factor 2 ; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA (370 aa)
 
   
  0.643
thrS
Threonyl-tRNA synthetase (661 aa)
 
        0.638
Your Current Organism:
Janibacter sp. HTCC2649
NCBI taxonomy Id: 313589
Other names: J. sp. HTCC2649, Janibacter, Janibacter HTCC2649, Janibacter sp. HTCC2649
Server load: low (3%) [HD]