STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ANN20733.1tRNA N6-adenosine(37)-N6-threonylcarbamoyltransferase complex dimerization subunit TsaB; Derived by automated computational analysis using gene prediction method: Protein Homology. (219 aa)    
Predicted Functional Partners:
tsaD
tRNA N6-adenosine(37)-threonylcarbamoyltransferase complex transferase subunit TsaD; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family.
 
 0.999
ANN20732.1
Ribosomal-protein-alanine N-acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.993
ANN22299.1
tRNA (N6-adenosine(37)-N6)-threonylcarbamoyltransferase complex ATPase TsaE; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.968
ANN20735.1
acetyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.636
pheT
phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
 
    0.612
murC
UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family.
  
  
 0.597
ANN20542.1
biotin--[acetyl-CoA-carboxylase] ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.578
nnrD
Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...]
 
     0.570
ANN21594.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
      
 0.563
ANN19928.1
Cobaltochelatase subunit CobN; Derived by automated computational analysis using gene prediction method: Protein Homology.
      
 0.563
Your Current Organism:
Amycolatopsis orientalis
NCBI taxonomy Id: 31958
Other names: A. orientalis, ATCC 19795, Actinoplanes sp. ATCC 53771, Amycolatopsis orientalis orientalis, Amycolatopsis orientalis subsp. orientalis, CIP 107113, DSM 40040, IFO 12806, IMSNU 20058, ISP 5040, JCM 4235, JCM 4600, KCTC 9412, NBRC 12806, NRRL 2450, Nocardia orientalis, Streptomyces orientalis, UNIQEM 181, VKM Ac-866
Server load: low (18%) [HD]