STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OLU10213.1MerR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa)    
Predicted Functional Partners:
OLU09045.1
Hybrid sensor histidine kinase/response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.670
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
    
 
 0.644
OLU10214.1
Zn-dependent hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.630
OLU07626.1
Cytochrome C biogenesis protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.629
OLU03955.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.629
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.605
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.591
OLU01205.1
ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.584
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 
 0.578
rpoD
RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth.
 
 
 0.575
Your Current Organism:
Achromobacter denitrificans
NCBI taxonomy Id: 32002
Other names: A. denitrificans, ATCC 15173, Achromobacter xylosoxidans subsp. denitrificans, Alcaligenes denitrificans, Alcaligenes denitrificans denitrificans, Alcaligenes denitrificans subsp. denitrificans, Alcaligenes xylosoxidans subsp. denitrificans, Alcaligenes xylosoxydans denitrificans, CCUG 407, CIP 77.15, DSM 30026, IFO 15125, JCM 5490, JCM 9657, NBRC 15125, NCTC 8582
Server load: low (30%) [HD]