STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tatAPreprotein translocase subunit TatA; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system. (87 aa)    
Predicted Functional Partners:
tatC
Twin arginine-targeting protein translocase TatB; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin- arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides.
  
 0.988
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
  
  
 0.971
mtnB
Methylthioribulose-1-phosphate dehydratase; Catalyzes the dehydration of methylthioribulose-1-phosphate (MTRu-1-P) into 2,3-diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P). Belongs to the aldolase class II family. MtnB subfamily.
     
 0.804
mtnD
Acireductone dioxygenase; Catalyzes 2 different reactions between oxygene and the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene) depending upon the metal bound in the active site. Fe-containing acireductone dioxygenase (Fe-ARD) produces formate and 2-keto-4- methylthiobutyrate (KMTB), the alpha-ketoacid precursor of methionine in the methionine recycle pathway. Ni-containing acireductone dioxygenase (Ni-ARD) produces methylthiopropionate, carbon monoxide and formate, and does not lie on the methionine recycle pathway.
       0.800
mtnC
2,3-diketo-5-methylthio-1-phosphopentane phosphatase; Bifunctional enzyme that catalyzes the enolization of 2,3- diketo-5-methylthiopentyl-1-phosphate (DK-MTP-1-P) into the intermediate 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate (HK- MTPenyl-1-P), which is then dephosphorylated to form the acireductone 1,2-dihydroxy-3-keto-5-methylthiopentene (DHK-MTPene). Belongs to the HAD-like hydrolase superfamily. MasA/MtnC family.
       0.797
AQS87878.1
Riboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family.
       0.768
AQS89540.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.720
AQS87847.1
MucR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.692
AQS87298.1
MucR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.690
AQS87192.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
     0.664
Your Current Organism:
Neoasaia chiangmaiensis
NCBI taxonomy Id: 320497
Other names: BCC 15763, N. chiangmaiensis, NBRC 101099, Neoasaia chiangmaiensis Yukphan et al. 2006, strain AC28
Server load: low (14%) [HD]