STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
priAPrimosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (750 aa)    
Predicted Functional Partners:
A0U93_12725
MFS transporter; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism.
    
 
 0.912
fmt
methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family.
    0.814
xerC_2
Recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids.
 
     0.681
AQS88200.1
single-stranded-DNA-specific exonuclease RecJ; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
     0.641
AQS88543.1
Replicative DNA helicase; Participates in initiation and elongation during chromosome replication; it exhibits DNA-dependent ATPase activity and contains distinct active sites for ATP binding, DNA binding, and interaction with DnaC protein, primase, and other prepriming proteins. Belongs to the helicase family. DnaB subfamily.
 
 
 0.634
AQS87061.1
Phosphopantothenoylcysteine synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family.
  
    0.617
murB
UDP-N-acetylenolpyruvoylglucosamine reductase; Cell wall formation.
 
     0.608
pheT
phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
 
  
 0.607
AQS88538.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.549
AQS89018.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.534
Your Current Organism:
Neoasaia chiangmaiensis
NCBI taxonomy Id: 320497
Other names: BCC 15763, N. chiangmaiensis, NBRC 101099, Neoasaia chiangmaiensis Yukphan et al. 2006, strain AC28
Server load: low (12%) [HD]