STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lexALexA family transcriptional regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. In the presence of single-stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (206 aa)    
Predicted Functional Partners:
KLV10240.1
Recombinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.955
recA
Recombinase A; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
  
 
 0.955
KLV08667.1
XRE family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.805
KLV07865.1
DNA polymerase V UmuC; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DNA polymerase type-Y family.
 
 
 0.805
dinB
DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.
 
 
 0.796
KLV07670.1
Recombination and repair protein; May be involved in recombinational repair of damaged DNA.
   
  
 0.758
KLV11756.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
  
 0.717
KLV08542.1
Cell division protein FtsZ; Component of the SOS system and an inhibitor of cell division. Accumulation of SulA causes rapid cessation of cell division and the appearance of long, non-septate filaments. In the presence of GTP, binds a polymerization-competent form of FtsZ in a 1:1 ratio, thus inhibiting FtsZ polymerization and therefore preventing it from participating in the assembly of the Z ring. This mechanism prevents the premature segregation of damaged DNA to daughter cells during cell division.
  
  
 0.681
KLV05739.1
Methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.592
plsB
Glycerol-3-phosphate acyltransferase; PlsB; catalyzes the formation of 1-acyl-sn-glycerol 3-phosphate by transfering the acyl moiety from acyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPAT/DAPAT family.
     
 0.587
Your Current Organism:
Photobacterium ganghwense
NCBI taxonomy Id: 320778
Other names: DSM 22954, IMSNU 60287, JCM 12487, KCTC 12328, P. ganghwense, Photobacterium ganghwense Park et al. 2006, Photobacterium sp. HF_10, strain FR1311
Server load: low (26%) [HD]