STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ibpA_216 kDa heat shock protein A; Belongs to the small heat shock protein (HSP20) family. (157 aa)    
Predicted Functional Partners:
clpA
ATP-dependent Clp protease ATP-binding subunit ClpA; Belongs to the ClpA/ClpB family.
  
 
 0.823
clpB
Chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.823
dnaK_1
Heat shock protein 70; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.686
grpE
HSP-70 cofactor; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependen [...]
  
  
 0.672
CUH52700.1
Hypothetical protein.
  
 
 0.658
hslV
ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
   
  
 0.649
hslU
Unfoldase HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
  
 0.602
fxsA
Suppressor of F exclusion of phage T7.
  
    0.591
dnaK_2
Heat shock protein 70.
  
 
 0.582
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
 
 0.577
Your Current Organism:
Shimia marina
NCBI taxonomy Id: 321267
Other names: CECT 7688, DSM 26895, JCM 13038, KCCM 42117, Rhodobacteraceae bacterium CL-TA03, S. marina, Shimia marina Choi and Cho 2006, strain CL-TA03
Server load: low (14%) [HD]