STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prfAPeptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (361 aa)    
Predicted Functional Partners:
prmC
Methyltransferase, HemK family; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily.
 
 
 0.989
rplM
Ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
 
 
 0.987
rplQ
Ribosomal protein L17; Identified by match to protein family HMM PF01196; match to protein family HMM TIGR00059.
 
 
 0.981
rplT
Ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
  
 
 0.980
rpsI
Ribosomal protein S9; Identified by match to protein family HMM PF00380; Belongs to the universal ribosomal protein uS9 family.
 
 
 0.979
rplO
Ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family.
 
 
 0.975
rplC
Ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family.
 
 
 
 0.975
rpmA
Ribosomal protein L27; Identified by match to protein family HMM PF01016; match to protein family HMM TIGR00062; Belongs to the bacterial ribosomal protein bL27 family.
 
 
 0.973
rpsG
Ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 
 0.972
rplD
Ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).
  
 
 0.971
Your Current Organism:
Synechococcus sp. JA33Ab
NCBI taxonomy Id: 321327
Other names: Cyanobacteria bacterium Yellowstone A-Prime, S. sp. JA-3-3Ab, Synechococcus sp. JA-3-3Ab, Synechococcus sp. OS-type A str. JA-3-3Ab, Synechococcus sp. OS-type A strain JA-3-3Ab
Server load: low (32%) [HD]