node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
folD | folD-2 | FRAAL2298 | FRAAL4216 | Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Bifunctional: 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.909 |
folD | xseA | FRAAL2298 | FRAAL6149 | Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Exodeoxyribonuclease VII large subunit (Exonuclease VII large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.644 |
folD-2 | folD | FRAAL4216 | FRAAL2298 | Bifunctional: 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.909 |
folD-2 | xseA | FRAAL4216 | FRAAL6149 | Bifunctional: 5,10-methylene-tetrahydrofolate dehydrogenase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Exodeoxyribonuclease VII large subunit (Exonuclease VII large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.713 |
ispH-2 | xseA | FRAAL6150 | FRAAL6149 | 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, 4Fe-4S protein; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis. Belongs to the IspH family. | Exodeoxyribonuclease VII large subunit (Exonuclease VII large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.648 |
mfd | polA | FRAAL6237 | FRAAL4613 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.711 |
mfd | recN | FRAAL6237 | FRAAL5181 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | DNA repair protein recN (Recombination protein N); May be involved in recombinational repair of damaged DNA. | 0.562 |
mfd | uvrB | FRAAL6237 | FRAAL4607 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | ATP-dependent DNA excision repair enzyme UvrABC, UvrB subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is [...] | 0.489 |
mfd | uvrC | FRAAL6237 | FRAAL4593 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | DNA excision repair enzyme UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. | 0.579 |
mfd | xseA | FRAAL6237 | FRAAL6149 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | Exodeoxyribonuclease VII large subunit (Exonuclease VII large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.747 |
mfd | xseB | FRAAL6237 | FRAAL6148 | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | Exodeoxyribonuclease VII (small subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. | 0.491 |
polA | mfd | FRAAL4613 | FRAAL6237 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | 0.711 |
polA | recN | FRAAL4613 | FRAAL5181 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | DNA repair protein recN (Recombination protein N); May be involved in recombinational repair of damaged DNA. | 0.706 |
polA | sbcD | FRAAL4613 | FRAAL1930 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | Putative exonuclease; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. | 0.983 |
polA | uvrB | FRAAL4613 | FRAAL4607 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | ATP-dependent DNA excision repair enzyme UvrABC, UvrB subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is [...] | 0.777 |
polA | uvrC | FRAAL4613 | FRAAL4593 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | DNA excision repair enzyme UvrABC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. | 0.737 |
polA | xseA | FRAAL4613 | FRAAL6149 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | Exodeoxyribonuclease VII large subunit (Exonuclease VII large subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. | 0.695 |
polA | xseB | FRAAL4613 | FRAAL6148 | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | Exodeoxyribonuclease VII (small subunit); Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. | 0.518 |
recN | mfd | FRAAL5181 | FRAAL6237 | DNA repair protein recN (Recombination protein N); May be involved in recombinational repair of damaged DNA. | Transcription-repair coupling factor (TRCF); Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. | 0.562 |
recN | polA | FRAAL5181 | FRAAL4613 | DNA repair protein recN (Recombination protein N); May be involved in recombinational repair of damaged DNA. | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family. | 0.706 |