STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ybiTPutative transport protein (ABC superfamily, atp_bind); Function proposed based on presence of conserved amino acid motif, structural feature or limited homolgy; transporter. (537 aa)    
Predicted Functional Partners:
rplD
50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.
   
 
 0.720
rplU
50S ribosomal subunit protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family.
   
   0.720
rplM
50S ribosomal subunit protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
  
   0.711
rpsO
30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA.
   
   0.710
rpsC
30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family.
   
   0.709
rplC
50S ribosomal subunit protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.
   
 
 0.706
rpsG
30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family.
  
 
 0.704
rpsL
30S ribosomal protein S12; With S4 and S5 plays an important role in translational accuracy.
  
 
 0.700
rplT
50S ribosomal subunit protein L20, also posttranslational autoregulator; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
   
 
 0.698
rpmA
50S ribosomal subunit protein L27; Function of homologous gene experimentally demonstrated in an other organism; structural protein; Belongs to the bacterial ribosomal protein bL27 family.
   
 
 0.698
Your Current Organism:
Pseudoalteromonas haloplanktis
NCBI taxonomy Id: 326442
Other names: P. haloplanktis TAC125, Pseudoalteromonas haloplanktis TAC125, Pseudoalteromonas haloplanktis str. TAC125, Pseudoalteromonas haloplanktis strain TAC125
Server load: low (26%) [HD]