STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroKShikimate kinase I; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (160 aa)    
Predicted Functional Partners:
aroB
Dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family.
  
 0.999
aroE
5-dehydroshikimate reductase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA).
 
 0.990
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
 
 
 0.987
PSHAa2713
Homologs of previously reported genes of unknown function; membrane component.
  
    0.861
aroC
Chorismate synthase (5-enolpyruvylshikimate-3-phosphate phospholyase); Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
  
 0.845
dam
DNA adenine methylase; Function of homologous gene experimentally demonstrated in an other organism; enzyme.
  
    0.803
tyrA
Bifunctional protein [Includes: chorismate mutase T (N-terminal); Function of homologous gene experimentally demonstrated in an other organism; enzyme.
  
  
 0.757
pilQ
Putative type IV pilus biogenesis protein PilQ (cytoplasmic ATPase); Function proposed based on presence of conserved amino acid motif, structural feature or limited homolgy; enzyme.
    
 0.734
pheA
Bifunctional protein [Includes: chorismate mutase P (N-terminal); Function of homologous gene experimentally demonstrated in an other organism; enzyme.
 
  
 0.682
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
  
  
 0.652
Your Current Organism:
Pseudoalteromonas haloplanktis
NCBI taxonomy Id: 326442
Other names: P. haloplanktis TAC125, Pseudoalteromonas haloplanktis TAC125, Pseudoalteromonas haloplanktis str. TAC125, Pseudoalteromonas haloplanktis strain TAC125
Server load: low (14%) [HD]