STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greBTranscription elongation factor and transcript cleavage; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreB releases sequences of up to 9 nucleotides in length. (159 aa)    
Predicted Functional Partners:
rpoC
RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.907
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.869
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.810
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.796
envZ
Two-component system, OmpR family, osmolarity sensor histidine kinase EnvZ; Function of homologous gene experimentally demonstrated in an other organism; receptor.
       0.783
ompR
Two-component system, OmpR family, phosphate regulon response regulator OmpR; Function of homologous gene experimentally demonstrated in an other organism; regulator.
       0.783
yhgF
Conserved protein with nucleic acid-binding protein-like domain (Transcriptional accessory protein); Function of strongly homologous gene; factor.
       0.687
PSHAa2852
Putative orphan protein; No homology to any previously reported sequences.
       0.519
dksAA
RNA polymerase factor controlling rRNA transcription with ppGpp as a modulator; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression.
  
 
 
 0.496
rpsO
30S ribosomal subunit protein S15; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA.
  
    0.479
Your Current Organism:
Pseudoalteromonas haloplanktis
NCBI taxonomy Id: 326442
Other names: P. haloplanktis TAC125, Pseudoalteromonas haloplanktis TAC125, Pseudoalteromonas haloplanktis str. TAC125, Pseudoalteromonas haloplanktis strain TAC125
Server load: low (14%) [HD]