node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AM1_1035 | AM1_1036 | AM1_1035 | AM1_1036 | Hypothetical protein. | Hypothetical protein. | 0.551 |
AM1_1036 | AM1_1035 | AM1_1036 | AM1_1035 | Hypothetical protein. | Hypothetical protein. | 0.551 |
AM1_1036 | AM1_1297 | AM1_1036 | AM1_1297 | Hypothetical protein. | Conserved hypothetical protein. | 0.487 |
AM1_1036 | AM1_2964 | AM1_1036 | AM1_2964 | Hypothetical protein. | Hypothetical protein. | 0.424 |
AM1_1036 | AM1_4026 | AM1_1036 | AM1_4026 | Hypothetical protein. | Conserved hypothetical protein. | 0.497 |
AM1_1036 | ndhA | AM1_1036 | AM1_2158 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | 0.636 |
AM1_1036 | ndhC | AM1_1036 | AM1_0132 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain A, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.574 |
AM1_1036 | ndhH | AM1_1036 | AM1_3333 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.705 |
AM1_1036 | ndhJ | AM1_1036 | AM1_0133 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.660 |
AM1_1036 | ndhK | AM1_1036 | AM1_1371 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain B, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.620 |
AM1_1036 | nuoN | AM1_1036 | AM1_2044 | Hypothetical protein. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.476 |
AM1_1297 | AM1_1036 | AM1_1297 | AM1_1036 | Conserved hypothetical protein. | Hypothetical protein. | 0.487 |
AM1_2964 | AM1_1036 | AM1_2964 | AM1_1036 | Hypothetical protein. | Hypothetical protein. | 0.424 |
AM1_4026 | AM1_1036 | AM1_4026 | AM1_1036 | Conserved hypothetical protein. | Hypothetical protein. | 0.497 |
ndhA | AM1_1036 | AM1_2158 | AM1_1036 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Hypothetical protein. | 0.636 |
ndhA | ndhC | AM1_2158 | AM1_0132 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain A, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhH | AM1_2158 | AM1_3333 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhJ | AM1_2158 | AM1_0133 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |
ndhA | ndhK | AM1_2158 | AM1_1371 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain B, putative; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family. | 0.999 |
ndhA | nuoN | AM1_2158 | AM1_2044 | Proton-translocating NAD(P)H-quinone oxidoreductase, chain H; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. | Proton-translocating NAD(P)H-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. | 0.999 |