STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily. (284 aa)    
Predicted Functional Partners:
hisE
phosphoribosyl-ATP diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.998
hisD
Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine.
 
  
 0.992
hisB
Imidazoleglycerol-phosphate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.991
hisF
Imidazole glycerol phosphate synthase subunit HisF; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.
 
  
 0.990
hisA
1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.986
hisI
phosphoribosyl-AMP cyclohydrolase; Catalyzes the hydrolysis of the adenine ring of phosphoribosyl-AMP.
 
  
 0.984
hisH
Imidazole glycerol phosphate synthase, glutamine amidotransferase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF.
 
  
 0.981
AOG29130.1
phosphoribosyl-ATP diphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.959
hisC
Histidinol-phosphate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily.
 
  
 0.945
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 
 0.860
Your Current Organism:
Cutibacterium avidum
NCBI taxonomy Id: 33010
Other names: ATCC 25577, Bacteroides avidus, C. avidum, CCUG 36754, CIP 103261, Corynebacterium avidum, DSM 4901, IFO 15671, Mycobacterium avidum, NBRC 15671, NCTC 11864, Propionibacterium avidum, Propionicibacterium avidum
Server load: low (20%) [HD]