node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
nuoB-2 | nuoCD | NIDE0614 | NIDE0613 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | 0.999 |
nuoB-2 | nuoH | NIDE0614 | NIDE0608 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
nuoB-2 | nuoI-2 | NIDE0614 | NIDE0607 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoB-2 | nuoJ | NIDE0614 | NIDE0230 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.983 |
nuoB-2 | nuoJ-2 | NIDE0614 | NIDE0606 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.998 |
nuoB-2 | nuoK-2 | NIDE0614 | NIDE0605 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.997 |
nuoB-2 | nuoL-2 | NIDE0614 | NIDE0604 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit L; Function of homologous gene experimentally demonstrated in an other organism; enzyme. | 0.994 |
nuoB-2 | nuoM | NIDE0614 | NIDE0603 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit M; Function of homologous gene experimentally demonstrated in an other organism; enzyme. | 0.997 |
nuoB-2 | nuoN | NIDE0614 | NIDE0225 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.993 |
nuoB-2 | nuoN-2 | NIDE0614 | NIDE0602 | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | NADH-quinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |
nuoCD | nuoB-2 | NIDE0613 | NIDE0614 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoCD | nuoH | NIDE0613 | NIDE0608 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
nuoCD | nuoI-2 | NIDE0613 | NIDE0607 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoCD | nuoJ | NIDE0613 | NIDE0230 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoCD | nuoJ-2 | NIDE0613 | NIDE0606 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
nuoCD | nuoK-2 | NIDE0613 | NIDE0605 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.999 |
nuoCD | nuoL-2 | NIDE0613 | NIDE0604 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit L; Function of homologous gene experimentally demonstrated in an other organism; enzyme. | 0.999 |
nuoCD | nuoM | NIDE0613 | NIDE0603 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit M; Function of homologous gene experimentally demonstrated in an other organism; enzyme. | 0.999 |
nuoCD | nuoN | NIDE0613 | NIDE0225 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |
nuoCD | nuoN-2 | NIDE0613 | NIDE0602 | NADH-quinone oxidoreductase, subunits C and D; Function of homologous gene experimentally demonstrated in an other organism; enzyme; In the N-terminal section; belongs to the complex I 30 kDa subunit family. | NADH-quinone oxidoreductase, membrane subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |