STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpBClp protease ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (860 aa)    
Predicted Functional Partners:
clpP
Clp protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.980
ALH81705.1
2-alkenal reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.963
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.963
ALH81123.1
Molecular chaperone Hsp70; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.950
clpS
Clp protease ClpS; Involved in the modulation of the specificity of the ClpAP- mediated ATP-dependent protein degradation; Belongs to the ClpS family.
 
 
 0.945
grpE
Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...]
  
 
 0.845
ALH79734.1
Heat-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.811
ALH82667.1
Heat-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the small heat shock protein (HSP20) family.
  
 
 0.786
groEL
Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.763
groS
Molecular chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.755
Your Current Organism:
Sphingopyxis macrogoltabida
NCBI taxonomy Id: 33050
Other names: ATCC 51380, CIP 104196, DSM 8826, IFO 15033, JCM 10192, LMG 17324, LMG:17324, NBRC 15033, S. macrogoltabida, Sphingomonas macrogolitabida, Sphingomonas macrogoltabidus, strain 203
Server load: low (24%) [HD]