STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pnpPolyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (734 aa)    
Predicted Functional Partners:
ACE03008.1
TIGRFAM: ribonuclease, Rne/Rng family; PFAM: RNA binding S1 domain protein; KEGG: plt:Plut_0012 ribonuclease E and G.
  
 
 0.887
ACE03862.1
PFAM: helicase domain protein; DEAD/DEAH box helicase domain protein; SMART: DEAD-like helicases; KEGG: plt:Plut_0987 DEAD/DEAH box helicase-like; Belongs to the DEAD box helicase family.
 
 
 0.824
deaD
DEAD/DEAH box helicase domain protein; DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation.
  
 
 0.796
nusA
NusA antitermination factor; Participates in both transcription termination and antitermination.
  
  
 0.785
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
  
  
 0.780
rpoB
DNA-directed RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
  
 0.775
rplD
Ribosomal protein L4/L1e; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome.
   
    0.761
rplC
Ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family.
   
  
 0.758
secY
Preprotein translocase, SecY subunit; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently.
  
    0.730
rpoA
DNA-directed RNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
  
 0.728
Your Current Organism:
Chlorobium phaeobacteroides BS1
NCBI taxonomy Id: 331678
Other names: C. phaeobacteroides BS1, Chlorobium phaeobacteroides MN1, Chlorobium phaeobacteroides str. BS1, Chlorobium phaeobacteroides strain BS1
Server load: medium (60%) [HD]