STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
trpATryptophan synthase, alpha chain; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (289 aa)    
Predicted Functional Partners:
SDM58144.1
Indole-3-glycerol phosphate synthase.
 
 
 0.999
trpB
Tryptophan synthase beta chain; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine; Belongs to the TrpC family.
 0.999
trpD
Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA).
 
  
 0.999
trpB-2
Tryptophan synthase beta chain; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
 0.999
lgt
Prolipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins; Belongs to the Lgt family.
  
    0.996
SDM72404.1
Anthranilate synthase component 2.
 
 
 0.994
SDM72438.1
Anthranilate synthase, component I.
 
  
 0.982
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
    0.975
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
 
 
 
 0.946
ilvA
Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
  
 
 0.944
Your Current Organism:
Actinomyces ruminicola
NCBI taxonomy Id: 332524
Other names: A. ruminicola, Actinomyces ruminicola An et al. 2006 emend. Nouioui et al. 2018, CGMCC 1.5030, DSM 27982, JCM 13352, strain B71
Server load: low (24%) [HD]