STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fadEacyl-CoA dehydrogenase; Functions in fatty acid oxidation; converts acyl-CoA and FAD to FADH2 and delta2-enoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (829 aa)    
Predicted Functional Partners:
fadJ
Multifunctional fatty acid oxidation complex subunit alpha; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. Belongs to the enoyl-CoA hydratase/isomerase family. In the central section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family.
 
 0.977
fadB
Multifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family.
 
 0.970
KKO46611.1
Electron transfer flavoprotein subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.937
KKO46612.1
Electron transfer flavoprotein subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.931
fadI
3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed.
 
  0.907
fadA
3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed.
 
  0.844
KKO45291.1
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
  0.837
KKO45288.1
enoyl-CoA hydratase; Catalyzes the reversible hydration of unsaturated fatty acyl-CoA to beta-hydroxyacyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the enoyl-CoA hydratase/isomerase family.
  
  0.808
KKO45294.1
methylcrotonoyl-CoA carboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.787
KKO46084.1
acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
  0.785
Your Current Organism:
Arsukibacterium ikkense
NCBI taxonomy Id: 336831
Other names: A. ikkense, Arsukibacterium ikkense Schmidt et al. 2016, DSM 17999, LMG 23455, LMG:23455, strain GCM72
Server load: low (22%) [HD]