STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folEGTP cyclohydrolase; Involved in the first step of tetrahydrofolate biosynthesis; catalyzes the formation of formate and 2-amino-4-hydroxy-6-(erythro-1,2, 3-trihydroxypropyl)dihydropteridine triphosphate from GTP and water; forms a homopolymer; Derived by automated computational analysis using gene prediction method: Protein Homology. (214 aa)    
Predicted Functional Partners:
folP
Dihydropteroate synthase; Catalyzes the condensation of para-aminobenzoate (pABA) with 6-hydroxymethyl-7,8-dihydropterin diphosphate (DHPt-PP) to form 7,8- dihydropteroate (H2Pte), the immediate precursor of folate derivatives.
 
 
 0.992
KKO44460.1
2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase; Catalyzes the formation of 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate from 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.991
folX
D-erythro-7,8-dihydroneopterin triphosphate epimerase; Catalyzes the formation of dihydromonapterin triphosphate from dihydroneopterin triphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.969
folB
Dihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin.
 
 
 0.951
KKO46449.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.927
KKO46825.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.921
KKO45613.1
Diguanylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.921
ribB
3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family.
  
 
 0.917
ribD
5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family.
    
 0.917
KKO47115.1
Histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.915
Your Current Organism:
Arsukibacterium ikkense
NCBI taxonomy Id: 336831
Other names: A. ikkense, Arsukibacterium ikkense Schmidt et al. 2016, DSM 17999, LMG 23455, LMG:23455, strain GCM72
Server load: low (18%) [HD]