node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
KZN94910.1 | KZN94911.1 | AZI98_16630 | AZI98_16635 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | PAS domain-containing sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.805 |
KZN94910.1 | KZN94912.1 | AZI98_16630 | AZI98_16640 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.527 |
KZN94910.1 | KZN94956.1 | AZI98_16630 | AZI98_16875 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | Universal stress protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.577 |
KZN94910.1 | KZN96217.1 | AZI98_16630 | AZI98_09150 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | single-stranded-DNA-specific exonuclease RecJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.458 |
KZN94910.1 | KZN97502.1 | AZI98_16630 | AZI98_02670 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | DNA-3-methyladenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.666 |
KZN94910.1 | ileS | AZI98_16630 | AZI98_11745 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.604 |
KZN94910.1 | queG | AZI98_16630 | AZI98_05305 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | Epoxyqueuosine reductase; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr); Belongs to the QueG family. | 0.924 |
KZN94910.1 | sigA | AZI98_16630 | AZI98_09565 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | 0.460 |
KZN94911.1 | KZN94910.1 | AZI98_16635 | AZI98_16630 | PAS domain-containing sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.805 |
KZN94911.1 | KZN94912.1 | AZI98_16635 | AZI98_16640 | PAS domain-containing sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.535 |
KZN94912.1 | KZN94910.1 | AZI98_16640 | AZI98_16630 | Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.527 |
KZN94912.1 | KZN94911.1 | AZI98_16640 | AZI98_16635 | Acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. | PAS domain-containing sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.535 |
KZN94956.1 | KZN94910.1 | AZI98_16875 | AZI98_16630 | Universal stress protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.577 |
KZN96217.1 | KZN94910.1 | AZI98_09150 | AZI98_16630 | single-stranded-DNA-specific exonuclease RecJ; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.458 |
KZN97502.1 | KZN94910.1 | AZI98_02670 | AZI98_16630 | DNA-3-methyladenine glycosylase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.666 |
ileS | KZN94910.1 | AZI98_11745 | AZI98_16630 | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.604 |
queG | KZN94910.1 | AZI98_05305 | AZI98_16630 | Epoxyqueuosine reductase; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr); Belongs to the QueG family. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.924 |
sigA | KZN94910.1 | AZI98_09565 | AZI98_16630 | RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. | 0.460 |