STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OJG21817.1Xanthine/uracil permease. (455 aa)    
Predicted Functional Partners:
OJG15546.1
Uracil permease.
 
  
 0.696
OJG20423.1
Xanthine permease.
 
  
 0.599
OJG21816.1
Hypothetical protein.
       0.535
purK
Phosphoribosylaminoimidazole carboxylase, ATPase subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR).
  
  
 0.522
purE
N5-carboxyaminoimidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR).
  
  
 0.519
xpt
Xanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis.
  
  
 0.518
purH
Bifunctional purine biosynthesis protein purH.
  
  
 0.515
purD
Phosphoribosylamine-glycine ligase; Belongs to the GARS family.
  
  
 0.513
purL
Phosphoribosylformylglycinamidine synthase 2; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist i [...]
  
  
 0.506
purS
Phosphoribosylformylglycinamidine synthase, purS protein; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought [...]
  
  
 0.504
Your Current Organism:
Enterococcus avium
NCBI taxonomy Id: 33945
Other names: ATCC 14025, CCUG 7983, CIP 103019, DSM 20679, E. avium, JCM 8722, LMG 10744, LMG:10744, NBRC 100477, NCDO 2369, NCIMB 702369, NCTC 9938, Streptococcus avium, strain Guthof E6844
Server load: low (22%) [HD]