STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KZL43139.150S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (117 aa)    
Predicted Functional Partners:
rpmI
50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family.
  
 
 0.999
rpsB
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family.
  
 
 0.999
rplA
50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release.
  
 
 0.999
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
 
 
 0.999
KZL35672.1
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
 
 
 0.999
rpmF
50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family.
  
 
 0.998
rpmG
50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family.
  
 
 0.998
rpmE2
RpmE2; there appears to be two types of ribosomal proteins L31 in bacterial genomes; some contain a CxxC motif while others do not; Bacillus subtilis has both types; the proteins in this cluster do not have the CXXC motif; RpmE is found in exponentially growing Bacilli while YtiA was found after exponential growth; expression of ytiA is controlled by a zinc-specific transcriptional repressor; RpmE contains one zinc ion and a CxxC motif is responsible for this binding; forms an RNP particle along with proteins L5, L18, and L25 and 5S rRNA; found crosslinked to L2 and L25 and EF-G; may b [...]
  
 
 0.998
rplL
50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
  
 
 0.998
rplJ
50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family.
  
 
 0.998
Your Current Organism:
Lactobacillus collinoides
NCBI taxonomy Id: 33960
Other names: ATCC 27612, CCUG 32259, CIP 103008, DSM 20515, L. collinoides, LMG 9194, LMG:9194
Server load: low (20%) [HD]