STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrCExcinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (599 aa)    
Predicted Functional Partners:
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 0.995
uvrA
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 0.922
KZL41463.1
Excinuclease ABC subunit A; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.835
mutL
DNA mismatch repair protein MutL; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex.
 
 
 0.771
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity.
 
   
 0.756
KZL41430.1
ATP-dependent DNA helicase PcrA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.732
KZL37158.1
DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...]
 
  
 0.713
KZL41084.1
Daunorubicin resistance protein DrrC; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.710
obgE
GTPase CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family.
       0.686
dnaE
DNA polymerase III DnaE; Catalyzes DNA-template-directed extension of the 3'-end of a DNA strand by one nucleotide at a time. Proposed to be responsible for the synthesis of the lagging strand. In the low GC gram positive bacteria this enzyme is less processive and more error prone than its counterpart in other bacteria; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.670
Your Current Organism:
Lactobacillus collinoides
NCBI taxonomy Id: 33960
Other names: ATCC 27612, CCUG 32259, CIP 103008, DSM 20515, L. collinoides, LMG 9194, LMG:9194
Server load: low (26%) [HD]