STRINGSTRING
folD protein (Actinobacillus succinogenes) - STRING interaction network
"folD" - Bifunctional protein FolD in Actinobacillus succinogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folDBifunctional protein FolD; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (285 aa)    
Predicted Functional Partners:
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (422 aa)
 
 
  0.996
purH
Bifunctional purine biosynthesis protein PurH; TIGRFAM- phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; PFAM- MGS domain protein; AICARFT/IMPCHase bienzyme formylation region; KEGG- msu-MS1297 AICAR transformylase/IMP cyclohydrolase PurH (only IMP cyclohydrolase domain in Aful) (532 aa)
 
  0.978
purU
Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4) (293 aa)
 
 
  0.966
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate (212 aa)
 
 
  0.964
fmt
Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (317 aa)
   
  0.954
Asuc_0658
PFAM- 5-formyltetrahydrofolate cyclo-ligase; KEGG- hit-NTHI1027 predicted 5-formyltetrahydrofolate cyclo-ligase; Belongs to the 5-formyltetrahydrofolate cyclo-ligase family (189 aa)
   
 
  0.950
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (523 aa)
   
   
  0.933
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (283 aa)
   
  0.923
purT
Formate-dependent phosphoribosylglycinamide formyltransferase; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family (393 aa)
     
 
    0.902
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate (1297 aa)
   
   
  0.856
Your Current Organism:
Actinobacillus succinogenes
NCBI taxonomy Id: 339671
Other names: A. succinogenes 130Z, Actinobacillus succinogenes, Actinobacillus succinogenes 130Z, Actinobacillus succinogenes str. 130Z, Actinobacillus succinogenes strain 130Z
Server load: low (13%) [HD]