STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
A0A2I0RYA4DNA-(Apurinic or apyrimidinic site) lyase 2. (660 aa)    
Predicted Functional Partners:
FEN1
Flap endonuclease 1; Structure-specific nuclease with 5'-flap endonuclease and 5'- 3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site- terminated flap. Acts as [...]
   
 0.992
A0A2I0S7Y8
DNA-(Apurinic or apyrimidinic site) lyase 1.
    
 0.984
NTH1
Endonuclease III homolog; Bifunctional DNA N-glycosylase with associated apurinic/apyrimidinic (AP) lyase function that catalyzes the first step in base excision repair (BER), the primary repair pathway for the repair of oxidative DNA damage. The DNA N-glycosylase activity releases the damaged DNA base from DNA by cleaving the N-glycosidic bond, leaving an AP site. The AP lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination. Primarily recognizes and repairs oxidative base damage of pyrimidines.
  
 0.937
A0A2I0S2U9
Small nuclear ribonucleoprotein Sm D1; Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site; Belongs to the snRNP core protein family.
   
 0.931
A0A2I0RPK8
Small nuclear ribonucleoprotein Sm D2.
   
 0.909
A0A2I0RN55
Small nuclear ribonucleoprotein E; Associated with the spliceosome snRNP U1, U2, U4/U6 and U5. Belongs to the snRNP Sm proteins family.
    
 0.901
A0A2I0S3R5
Extracellular metalloprotease.
   
 0.895
A0A2I0RJ28
Small nuclear ribonucleoprotein G.
    
 0.892
UNG1
Uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine.
   
 0.878
A0A2I0S6T5
DNA repair protein RAD16.
   
 
 0.878
Your Current Organism:
Cercospora zeina
NCBI taxonomy Id: 348901
Other names: C. zeina, CBS 118820, CPC 11995, CPC 11995 (ex-type)
Server load: low (22%) [HD]