STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nuoBNADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (193 aa)    
Predicted Functional Partners:
nuoA
NADH-ubiquinone/plastoquinone oxidoreductase chain 3; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
 
 0.999
nuoN
NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
 
 0.999
Amuc_1605
KEGG: dsy:DSY2579 NADH dehydrogenase I chain M; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M; PFAM: NADH/Ubiquinone/plastoquinone (complex I).
 
 0.999
nuoK
NADH-ubiquinone oxidoreductase chain 4L; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family.
 
 
 0.999
nuoH
NADH dehydrogenase (quinone); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
 
 0.999
Amuc_1611
PFAM: ferredoxin; KEGG: mxa:MXAN_2728 putative NADH dehydrogenase I, G subunit.
 
 0.999
nuoD
NADH dehydrogenase I, D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
 0.999
nuoC
NADH dehydrogenase (ubiquinone) 30 kDa subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
 
 0.999
Amuc_1606
KEGG: dsy:DSY2580 NADH dehydrogenase I chain L; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I) chain 5/L domain protein; NADH/Ubiquinone/plastoquinone (complex I).
 
 
 0.998
Amuc_1612
PFAM: Respiratory-chain NADH dehydrogenase domain 51 kDa subunit; KEGG: afw:Anae109_4348 NADH-quinone oxidoreductase, F subunit.
  
 0.998
Your Current Organism:
Akkermansia muciniphila
NCBI taxonomy Id: 349741
Other names: A. muciniphila ATCC BAA-835, Akkermansia muciniphila ATCC BAA-835, Akkermansia muciniphila Muc, Akkermansia muciniphila str. ATCC BAA-835, Akkermansia muciniphila strain ATCC BAA-835, Akkermansia sp. Muc
Server load: low (14%) [HD]