STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaJChaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (374 aa)    
Predicted Functional Partners:
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
 0.999
grpE
GrpE protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
 
 
 0.988
htpG
Heat shock protein Hsp90; Molecular chaperone. Has ATPase activity.
 
 0.951
dapB
Dihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family.
 
  
 0.943
groL
Chaperonin GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 0.939
hslU
Heat shock protein HslVU, ATPase subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
 
 0.898
hslV
HslV component of HslUV peptidase, Threonine peptidase, MEROPS family T01B; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
  
  
 0.884
groS
Chaperonin Cpn10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
 
 
 0.858
gyrA
DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner.
  
  
 0.852
rpoH
RNA polymerase, sigma 32 subunit, RpoH; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes.
  
 
 0.819
Your Current Organism:
Marinobacter hydrocarbonoclasticus
NCBI taxonomy Id: 351348
Other names: M. hydrocarbonoclasticus VT8, Marinobacter aquaeolei VT8, Marinobacter aquaeolei str. VT8, Marinobacter aquaeolei strain VT8, Marinobacter hydrocarbonoclasticus VT8
Server load: low (26%) [HD]