STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Acel_2125Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (342 aa)    
Predicted Functional Partners:
pgk
Phosphoglycerate kinase / triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 0.999
Acel_1114
KEGG: tfu:Tfu_2017 glyceraldehyde-3-phosphate dehydrogenase, type I; TIGRFAM: glyceraldehyde-3-phosphate dehydrogenase, type I; PFAM: glyceraldehyde 3-phosphate dehydrogenase; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
  
 0.988
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
  
 0.975
tal
Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 2 subfamily.
  
 
 0.968
Acel_1127
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
  
 
 0.964
pfp
Pyrophosphate-dependent phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions.
  
 
 0.956
Acel_1877
TIGRFAM: fructose-1,6-bisphosphatase, class II; PFAM: GlpX family protein; KEGG: sma:SAV3215 putative glycerol-inducible protein.
  
 
 0.942
gpmA
Phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
   
 
 0.933
Acel_1080
PFAM: pyruvate kinase; KEGG: sma:SAV6217 putative pyruvate kinase; Belongs to the pyruvate kinase family.
  
 0.918
Acel_0721
PFAM: deoxyribose-phosphate aldolase/phospho-2-dehydro-3-deoxyheptonate aldolase; KEGG: sto:ST2350 hypothetical protein.
    
 0.912
Your Current Organism:
Acidothermus cellulolyticus
NCBI taxonomy Id: 351607
Other names: A. cellulolyticus 11B, Acidothermus cellulolyticus 11B, Acidothermus cellulolyticus str. 11B, Acidothermus cellulolyticus strain 11B
Server load: low (28%) [HD]