STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
gidAtRNA uridine(34) 5-carboxymethylaminomethyl synthesis enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (629 aa)    
Predicted Functional Partners:
trmE
tRNA uridine(34) 5-carboxymethylaminomethyl synthesis GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family.
 
 0.985
gidB
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA.
  
 0.982
mnmA
tRNA 2-thiouridine(34) synthase MnmA; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA(Lys), tRNA(Glu) and tRNA(Gln), leading to the formation of s(2)U34, the first step of tRNA-mnm(5)s(2)U34 synthesis. Sulfur is provided by IscS, via a sulfur-relay system. Binds ATP and its substrate tRNAs; Belongs to the MnmA/TRMU family.
 
 0.858
atpE
ATP F0F1 synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
  
 0.744
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
      0.730
mnmC
tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein MnmC; Catalyzes the last two steps in the biosynthesis of 5- methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position (U34) in tRNA. Catalyzes the FAD-dependent demodification of cmnm(5)s(2)U34 to nm(5)s(2)U34, followed by the transfer of a methyl group from S-adenosyl-L-methionine to nm(5)s(2)U34, to form mnm(5)s(2)U34; In the C-terminal section; belongs to the DAO family.
   
 
 0.676
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
      0.665
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).
 
 
  
 0.664
AMG52178.1
FMN-binding protein MioC; An electron-transfer protein; flavodoxin binds one FMN molecule, which serves as a redox-active prosthetic group; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.660
dnaA
Chromosomal replication initiation protein DnaA; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. Belongs to the DnaA family.
  
  
 0.653
Your Current Organism:
Citrobacter amalonaticus
NCBI taxonomy Id: 35703
Other names: ATCC 25405, C. amalonaticus, CCUG 4860, CECT 863, CIP 82.89, Citrobacter intermedius biogroup a, DSM 4593, LMG 7873, LMG:7873, Levinea amalonatica, NCTC 10805
Server load: low (26%) [HD]