STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
topBDNA topoisomerase III; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA su [...] (647 aa)    
Predicted Functional Partners:
AMG52244.1
ATP-dependent DNA helicase RecQ; Functions in blocking illegitimate recombination, enhancing topoisomerase activity, initiating SOS signaling and clearing blocked replication forks; component of the RecF recombinational pathway; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.983
AMG51720.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.910
nifJ
Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
   0.889
selD
Selenide,water dikinase SelD; Synthesizes selenophosphate from selenide and ATP.
       0.798
gltB
Glutamate synthase large subunit; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.725
sbcC
Exonuclease SbcC; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SMC family. SbcC subfamily.
 
 0.706
AMG52515.1
Single-stranded DNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism.
  
 
 0.669
CelB
PTS lactose transporter subunit IIC; Derived by automated computational analysis using gene prediction method: Protein Homology.
      
 0.624
OqxB
Transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
      
 0.620
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity; Belongs to the DNA polymerase type-A family.
  
 0.617
Your Current Organism:
Citrobacter amalonaticus
NCBI taxonomy Id: 35703
Other names: ATCC 25405, C. amalonaticus, CCUG 4860, CECT 863, CIP 82.89, Citrobacter intermedius biogroup a, DSM 4593, LMG 7873, LMG:7873, Levinea amalonatica, NCTC 10805
Server load: low (14%) [HD]