STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMG54590.1Formate dehydrogenase subunit alpha; Selenocysteine-containing polypeptide; hydrogen linked formate dehydrogenase which catalyzes the oxidation of formate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (715 aa)    
Predicted Functional Partners:
hycE
Hydrogenase 3 large subunit; Formate hydrogenlyase subunit 5; HycBCDEFG is part of the formate hydrogenlyase system which is involved in the cleaving of formate to dihydrogen and carbon dioxide; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.963
cysJ
Sulfite reductase subunit alpha; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component. Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the N-terminal section; belongs to the flavodoxin family.
    
 0.917
AMG53358.1
(Fe-S)-binding protein; Unknown function; in E. coli the aegA gene is regulated by Fnr, NarXL, and NarQ (but not ArcA), induced under anaerobic conditions and repressed in the presence of nitrate (anaerobic); Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.915
napF
Ferredoxin-type protein NapF; Could be involved in the maturation of NapA, the catalytic subunit of the periplasmic nitrate reductase, before its export into the periplasm; Belongs to the NapF family.
   
 
 0.915
AMG51665.1
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.905
norW
NADH:flavorubredoxin oxidoreductase; One of at least two accessory proteins for anaerobic nitric oxide (NO) reductase. Reduces the rubredoxin moiety of NO reductase.
      0.905
NapF
Ferredoxin-type protein NapF; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.897
AMG53521.1
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
 
 0.822
fdhD
Sufurtransferase FdhD; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family.
 
 
 0.814
AMG53083.1
Formate hydrogenlyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.803
Your Current Organism:
Citrobacter amalonaticus
NCBI taxonomy Id: 35703
Other names: ATCC 25405, C. amalonaticus, CCUG 4860, CECT 863, CIP 82.89, Citrobacter intermedius biogroup a, DSM 4593, LMG 7873, LMG:7873, Levinea amalonatica, NCTC 10805
Server load: low (20%) [HD]