STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMG55294.1Transcriptional regulator; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method: Protein Homology. (112 aa)    
Predicted Functional Partners:
AMG55293.1
Ammonium transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
glnD
Bifunctional uridylyltransferase/uridylyl-removing protein; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism.
 
 
 
 0.853
glnL
Sensory histidine kinase in two-component regulatory system with GlnG; acts as a signal transducer which responds to the nitrogen level of cell and modulates the activity of ntrC by phosphorylation/dephosphorylation; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.807
AMG53282.1
Transcriptional regulator; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
  
0.753
argA
N-acetylglutamate synthase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily.
   
 
 0.700
argB
Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate.
    
 
 0.681
AMG51950.1
Cellulose synthase; Binds the cellulose synthase activator, bis-(3'-5') cyclic diguanylic acid (c-di-GMP); Belongs to the AcsB/BcsB family.
    
 
 0.665
AMG53310.1
Enhanced serine sensitivity protein SseB; Enhances serine sensitivity caused by inhibition of homoserine dehydrogenase I; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.665
AMG53573.1
PAS domain-containing sensor histidine kinase; With AtoC is a member of a two-component regulatory system involved in the transcriptional regulation of the ato genes for acetoacetate metabolism; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.610
gltB
Glutamate synthase large subunit; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.529
Your Current Organism:
Citrobacter amalonaticus
NCBI taxonomy Id: 35703
Other names: ATCC 25405, C. amalonaticus, CCUG 4860, CECT 863, CIP 82.89, Citrobacter intermedius biogroup a, DSM 4593, LMG 7873, LMG:7873, Levinea amalonatica, NCTC 10805
Server load: low (22%) [HD]