STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
thrSSer-tRNA(Thr) hydrolase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr). (635 aa)    
Predicted Functional Partners:
rplT
LSU ribosomal protein L20P; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
 
 0.987
infC
Bacterial translation initiation factor 3 (bIF-3); IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins.
 
  
 0.987
infB
Bacterial translation initiation factor 2 (bIF-2); One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily.
 
 0.969
rpsO
SSU ribosomal protein S15P; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA.
  
 
 0.943
rplO
LSU ribosomal protein L15P; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family.
   
 
 0.939
rplK
LSU ribosomal protein L11P; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors.
   
 
 0.926
rpsN
SSU ribosomal protein S14P; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family.
   
 
 0.926
rplC
LSU ribosomal protein L3P; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.
   
 
 0.924
rplV
LSU ribosomal protein L22P; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).
   
 
 0.918
rpmF
TIGRFAM: ribosomal protein L32; PFAM: ribosomal L32p protein; KEGG: pat:Patl_2126 ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family.
  
   0.902
Your Current Organism:
Psychromonas ingrahamii
NCBI taxonomy Id: 357804
Other names: P. ingrahamii 37, Psychromonas ingrahamii 37, Psychromonas ingrahamii str. 37, Psychromonas ingrahamii strain 37, gas vacuolate str. 37
Server load: medium (42%) [HD]