STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AQS63821.1Isochorismate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (391 aa)    
Predicted Functional Partners:
AQS63823.1
Isochorismatase; 2,3 dihydro-2,3 dihydroxybenzoate synthase; catalyzes the formation of 2,3 dihydro-2,3 dihydroxybenzoate and pyruvate from isochorismate; with Ent DEF is involved in enterobactin synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.999
AQS63819.1
Condensation protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.997
entE
Bifunctional 2,3-dihydroxybenzoate-AMP ligase/S-dihydroxybenzoyltransferase; activates the carboxylate group of 2,3-dihydroxy-benzoate forming (2,3-dihydroxybenzoyl)adenylate then catalyzes the acylation of holo-entB with 2,3-dihydroxy-benzoate adenylate; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.997
AQS63820.1
Peptide synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.921
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
  
 0.877
AQS61104.1
Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
0.875
AQS63824.1
2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.849
AQS64003.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.845
AQS64640.1
Prephenate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.838
aroQ
Type II 3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family.
     
 0.821
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, LMG:150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (26%) [HD]