STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rutFFmn reductase; Catalyzes the reduction of FMN to FMNH2 which is used to reduce pyrimidine by RutA via the Rut pathway (179 aa)    
Predicted Functional Partners:
rutA
Pyrimidine monooxygenase; Catalyzes the pyrimidine ring opening between N-3 and C-4 by an unusual flavin hydroperoxide-catalyzed mechanism to yield ureidoacrylate peracid. It cleaves pyrmidine rings directly by adding oxygen atoms, making a toxic ureidoacrylate peracid product which can be spontaneously reduced to ureidoacrylate
 
    0.608
rutC
Aminoacrylate peracid reductase; May reduce aminoacrylate peracid to aminoacrylate. Required to remove a toxic intermediate produce by the pyrimidine nitrogen degradation
 
  
 0.594
rutD
Aminoacrylate hydrolase; May increase the rate of spontaneous hydrolysis of aminoacrylate to malonic semialdehyde. Required to remove a toxic intermediate produce in the pyrimidine nitrogen degradation
 
   
 0.578
CN09_06240
Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate
       0.528
ribB
3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate
     
 0.504
rutB
Amidohydrolase; In vivo, quickly hydrolyzes the ureidoacrylate peracid to avoid toxicity, but can also hydrolyzes ureidoacrylate that is formed spontaneously from ureidoacrylate peracid. One of the products of hydrolysis, carbamate, hydrolyzes spontaneously, thereby releasing one of the pyrimidine rings nitrogen atoms as ammonia and one of its carbons as CO2
 
   
 0.497
ribD
5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate
       0.476
CN09_32245
Benzene 1,2-dioxygenase; Derived by automated computational analysis using gene prediction method: Protein Homology
   
 
 0.408
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (10%) [HD]