STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CN09_10375Riboflavin biosynthesis protein RibD; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'-phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)- pyrimidinedione 5'-phosphate; In the C-terminal section; belongs to the HTP reductase family (369 aa)    
Predicted Functional Partners:
rsgA
Small ribosomal subunit biogenesis GTPase RsgA; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Helps release RbfA from mature subunits. May play a role in the assembly of ribosomal proteins into the subunit. Circularly permuted GTPase that catalyzes slow GTP hydrolysis, GTPase activity is stimulated by the 30S ribosomal subunit
       0.999
cpsB
Mannose-1-phosphate guanyltransferase; Capsular polysaccharide colanic acid biosynthesis protein; catalyzes the formation of GDP-mannose from GTP and alpha-D-mannose 1-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the mannose-6-phosphate isomerase type 2 family
       0.999
CN09_01825
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology
  
    0.999
CN09_01860
D-arabinose 5-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SIS family. GutQ/KpsF subfamily
  
  
 0.999
CN09_02265
Lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology
       0.999
CN09_02330
Metallophosphoesterase; Derived by automated computational analysis using gene prediction method: Protein Homology
       0.999
ftsH
ATP-dependent zinc metalloprotease FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family
  
    0.999
CN09_03380
2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology
  
  
 0.999
CN09_03985
Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology
  
  
 0.999
dnaG
DNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication; Belongs to the DnaG primase family
 
  
 0.999
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (4%) [HD]