STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. (1355 aa)    
Predicted Functional Partners:
secE
Preprotein translocase, SecE subunit, bacterial; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation.
    
 0.999
GAP15125.1
Protein translocase, SecG subunit; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family.
   
 0.999
secY
Protein translocase subunit secY/sec61 alpha; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently.
 
 
 0.999
rplW
Ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family.
   
 
 0.981
GAP14165.1
Hypothetical protein.
  
 
 0.980
rpmC
LSU ribosomal protein L29P; Belongs to the universal ribosomal protein uL29 family.
    
 
 0.979
rplS
LSU ribosomal protein L19P; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.
 
 
 
 0.976
rplY
Ribosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily.
   
 
 0.973
rplT
LSU ribosomal protein L20P; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
  
 
 
 0.972
rplI
LSU ribosomal protein L9P; Binds to the 23S rRNA.
 
 
 
 0.971
Your Current Organism:
Longilinea arvoryzae
NCBI taxonomy Id: 360412
Other names: JCM 13670, KTCC 5380, L. arvoryzae, Longilinea arvoryzae Yamada et al. 2007, anaerobic filamentous bacterium KOME-1, strain KOME-1
Server load: low (14%) [HD]