node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SEW02054.1 | SEW02070.1 | SAMN04488515_0684 | SAMN04488515_0685 | Hypothetical protein. | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 0.699 |
SEW02054.1 | SEW02091.1 | SAMN04488515_0684 | SAMN04488515_0686 | Hypothetical protein. | Hypothetical protein. | 0.699 |
SEW02054.1 | SEW02168.1 | SAMN04488515_0684 | SAMN04488515_0690 | Hypothetical protein. | 4-carboxymuconolactone decarboxylase. | 0.696 |
SEW02054.1 | SEW02188.1 | SAMN04488515_0684 | SAMN04488515_0691 | Hypothetical protein. | NADH dehydrogenase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.696 |
SEW02054.1 | SEW02253.1 | SAMN04488515_0684 | SAMN04488515_0694 | Hypothetical protein. | NADH dehydrogenase subunit L. | 0.666 |
SEW02054.1 | SEW02275.1 | SAMN04488515_0684 | SAMN04488515_0695 | Hypothetical protein. | NADH dehydrogenase subunit M. | 0.681 |
SEW02054.1 | SEW38958.1 | SAMN04488515_0684 | SAMN04488515_2534 | Hypothetical protein. | Hypothetical protein. | 0.725 |
SEW02054.1 | nuoH | SAMN04488515_0684 | SAMN04488515_0687 | Hypothetical protein. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.696 |
SEW02054.1 | nuoI | SAMN04488515_0684 | SAMN04488515_0688 | Hypothetical protein. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.696 |
SEW02054.1 | nuoK | SAMN04488515_0684 | SAMN04488515_0692 | Hypothetical protein. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.686 |
SEW02070.1 | SEW02054.1 | SAMN04488515_0685 | SAMN04488515_0684 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Hypothetical protein. | 0.699 |
SEW02070.1 | SEW02091.1 | SAMN04488515_0685 | SAMN04488515_0686 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | Hypothetical protein. | 0.943 |
SEW02070.1 | SEW02168.1 | SAMN04488515_0685 | SAMN04488515_0690 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | 4-carboxymuconolactone decarboxylase. | 0.856 |
SEW02070.1 | SEW02188.1 | SAMN04488515_0685 | SAMN04488515_0691 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
SEW02070.1 | SEW02253.1 | SAMN04488515_0685 | SAMN04488515_0694 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit L. | 0.999 |
SEW02070.1 | SEW02275.1 | SAMN04488515_0685 | SAMN04488515_0695 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit M. | 0.999 |
SEW02070.1 | nuoH | SAMN04488515_0685 | SAMN04488515_0687 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
SEW02070.1 | nuoI | SAMN04488515_0685 | SAMN04488515_0688 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
SEW02070.1 | nuoK | SAMN04488515_0685 | SAMN04488515_0692 | NADH dehydrogenase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. | NADH dehydrogenase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. | 0.999 |
SEW02091.1 | SEW02054.1 | SAMN04488515_0686 | SAMN04488515_0684 | Hypothetical protein. | Hypothetical protein. | 0.699 |